Saturday, 3 August 2019

PLUS ONE MATHEMATICS CHAPTER- 2 IMPORTANT QUESTIONS



    HELLO FRIENDS WELCOME BACK TO TECH 4 YOU WEBSITE 


TODAY WE ARE DISCUSSING ABOUT PLUS ONE MATHEMATICS CHAPTER 2 IMPORTANT QUESTIONS

SO LETS START

FOLLOW EACH ONE

    QUESTIONS



 1. LET X ={12345}AND Y ={13579} WHICH OF THE FOLLOWING IS / ARE RELATIONS       FROM X TO Y

options here

     (a)  R1 =1(x,y)y=2+x,x (-X,y(-Y}

    (b)  R2 ={(1,1) , (2,1 ) , (3,3) , (4,3) , (5,5) }

     (c)  R3 = { (1,1) ,(1.3 ) ,( 3,5 ) (3,7 ) , (5,7 ) }

     (d) R4 = 1(1,3) , (2,5 ) , (2,4 ) , (7,9 ) 


2. With reference  to a universal set ,the inclusion of a subset in another ,is relation,which is


   (a)  symmetric only

   (b) equivalence relation

   (c) reflexive only
  
  (d) non of these


3. The relation R is defined on the set of natural numbers as {(a,b) :a= b}.
                _ 1
    Then R     is given by


 (a) {(2,1) ,(4,2) , (6,3)...}

 (b) {(1,2) , (2,4 ) ,( 3,6 )...}
          _1
 (c)  R     is not defined 

 (d) non of these


4. The relation R defined on the set of natural numbers as {( a,b) : a differs from b by 3} , is             given by

  (a) { (1,4, (2,5 ) , (3,6 ) ...}

 (b) {(4,1) , (5,2 ) , (6,3 )...}

 (c)  { ( 1,3) , (2,6 ) , (3,9 ),...}

 (d)   Non of these

5. Given two finite sets A and B such that  n(A) =2,n(B)=3.Then total number of relation from        A  to B is 

  (a) 4

  (b) 8

  (c) 64

  (d) Non of these 


6. Let A = {1,2,3 }. The total number of distinct relation that can be defined over A is 
          9
  (a) 2   

  (b) 6

  (c) 8

  (d) Non of these 

8. Let A ={1,2,3,} , B= {1,3,5}.A relation R:A - B is 
                                                                             _1
    defined by R ={(1,30 ,(1,5 ) ,(2,1 ) } Then R      Is Defined by 


  (a) {(1,2),(3,1) ,( 1,3 ), (1,5 )}

  (b) {(1,2), (3,1), (2,1)}

  (c)  {(1,2), (5,1),(3,1)}

 (d)  Non of these


9. A relation from P to Q is 

 (a) A universal set of P *Q

 (b) P*Q

 (c) An equivalent set of P * Q

 (d)   A Subset of P*Q
  
10. product of two odd functions is 

  (a) even function

  (b) odd function

  (c)Neither even nor odd

  (d) cannot be determined 





0 comments: